Rendering with Environment Maps

Jaroslav Křivánek, KSVI, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Acknowledgement

 Mostly based on Ravi Ramamoorthi's slides available from <u>http://inst.eecs.berkeley.edu/~cs283/fa10</u>

Goal

- Real-time rendering with complex lighting, shadows, and possibly GI
- Infeasible too much computation for too small a time budget
- Approaches
 - Lift some requirements, do specific-purpose tricks
 - Environment mapping, irradiance environment maps
 - SH-based lighting
 - **Split the effort**
 - Offline pre-computation + real-time image synthesis
 - "Pre-computed radiance transfer"

Environment mapping (a.k.a. imagebased lighting)

Miller and Hoffman, 1984 Later, Greene 86, Cabral et al, Debevec 97, ...

Assumptions

- Distant illumination
- No shadowing, interreflection

 Illuminating CG objects using measurements of real light (=light probes)

8

Video

- Rendering with natural light
- Fiat Lux

Sampling strategies

S

EM IS 600 sample

Diffuse only

Ward BRDF, $\alpha = 0.2$ Ward BRDF, $\alpha = 0.05$

Ward BRDF, α =0.01

Real-time rendering

- Mirror surfaces easy (just a texture look-up)
- What if the surface is rougher...

Or completely diffuse?

Reflection Maps

- Phong model for rough surfaces
 - **Illumination function of reflection direction** *R*
- Lambertian diffuse surface
 - **Illumination function of surface normal** *N*

Reflection Maps [Miller and Hoffman, 1984]
 Irradiance (indexed by *N*) and Phong (indexed by *R*)

Reflection Maps

Can't do dynamic lighting
 Slow blurring in pre-process

SH-based Irradiance Env. Maps

Incident Radiance (Illumination Environment Map)

Irradiance Environment Map

Analytic Irradiance Formula

Ramamoorthi and Hanrahan 01 Basri and Jacobs 01

$$A_{l} = 2\pi \frac{(-1)^{\frac{l}{2}-1}}{(l+2)(l-1)} \left[\frac{l!}{2^{l} \left(\frac{l}{2}!\right)^{2}} \right] \quad l \text{ even}$$

9 Parameter Approximation

9 Parameter Approximation

Exact image

RMS Error = 8%

9 Parameter Approximation

RMS Error = 1%

For any illumination, average error < 3% [Basri Jacobs 01]

Real-Time Rendering

$$E(n) = n^t M n$$

- Simple procedural rendering method (no textures)
 - Requires only matrix-vector multiply and dot-product
 - **In software or NVIDIA vertex programming hardware**
- Widely used in Games (AMPED for Microsoft Xbox), Movies (Pixar, Framestore CFC, ...)

surface float1 irradmat (matrix4 M, float3 v) {
float4 n = {v, 1};
return dot(n, M*n);

SH-based Irradiance Env. Maps

Images courtesy Ravi Ramamoorthi & Pat Hanrahan

Video – Ramamoorthi & Hanrahan 2001

- [Kautz et al. 2003]
- Arbitrary, dynamic env. map
- Arbitrary BRDF
- No shadows

SH representation

(a) point light

(b) glossy

(c) anisotropic

- Environment map (one set of coefficients)
- Scene BRDFs (one coefficient vector for each discretized view direction)

BRDF Representation

- BRDF coefficient vector for a given ω_o, looked up from a texture (use e.g. paraboloid mapping to map ω_o to a texture coordinate)
- BRDF coefficients precomputed for all scene BRDFs (SH projection)

Rendering: for each vertex / pixel, do

- BRDF is in local frame
- Environment map in global frame
- Need coordinate frame alignment -> SH rotation
- SH closed under rotation
 rotation matrix
 Fastest known procedure is the *zxzxz*-decomposition [Kautz et al. 2003]

$R_{SH} =$	1	0	0	0	0	0	0	0	0	••••
	0	Χ	Х	Χ	0	0	0	0	0	•••
	0	X	Х	Х	0	0	0	0	0	•••
	0	X	Х	Х	0	0	0	0	0	•••
	0	0	0	0	Χ	Χ	Χ	Χ	Χ	•••
	0	0	0	0	X	Х	Х	Х	Х	•••
	0	0	0	0	X	Х	Х	Х	Х	•••
	0	0	0	0	X	Х	Х	Х	Х	•••
	0	0	0	0	Χ	Х	Х	Х	Х	•••
		•	:	:	:	:	:	:	:	•••

Figure 3: Brushed metal head in various lighting environments.

(a) varying exponent (b) varying anisotropy Figure 4: Spatially-Varying BRDFs.

• Video: Kautz 2003

Environment Map Summary

- Very popular for interactive rendering
- Extensions handle complex materials
- Shadows with precomputed transfer
- But cannot directly combine with shadow maps
- Limited to distant lighting assumption